Combining Computational Fluid Dynamics and Agent-Based Modeling: A New Approach to Evacuation Planning

نویسندگان

  • Joshua M. Epstein
  • Ramesh Pankajakshan
  • Ross A. Hammond
چکیده

We introduce a novel hybrid of two fields-Computational Fluid Dynamics (CFD) and Agent-Based Modeling (ABM)-as a powerful new technique for urban evacuation planning. CFD is a predominant technique for modeling airborne transport of contaminants, while ABM is a powerful approach for modeling social dynamics in populations of adaptive individuals. The hybrid CFD-ABM method is capable of simulating how large, spatially-distributed populations might respond to a physically realistic contaminant plume. We demonstrate the overall feasibility of CFD-ABM evacuation design, using the case of a hypothetical aerosol release in Los Angeles to explore potential effectiveness of various policy regimes. We conclude by arguing that this new approach can be powerfully applied to arbitrary population centers, offering an unprecedented preparedness and catastrophic event response tool.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combined application of computational fluid dynamics (CFD) and design of experiments (DOE) to hydrodynamic simulation of a coal classifier

Combining the computational fluid dynamics (CFD) and the design of experiments (DOE) methods, as a mixed approach in modeling was proposed so that to simultaneously benefit from the advantages of both modeling methods. The presented method was validated using a coal hydraulic classifier in an industrial scale. Effects of operating parameters including feed flow rate, solid content and baffle le...

متن کامل

Computational fluid dynamics study and GA modeling approach of the bend angle effect on thermal-hydraulic characteristics in zigzag channels

In the study, the thermal-hydraulic performance of the zigzag channels with circular cross-section was analyzed by Computational Fluid Dynamics (CFD). The standard K-Ꜫ turbulent scalable wall functions were used for modeling. The wall temperature was assumed constant 353 K and water was used as the working fluid. The zigzag serpentine channels with bend angles of 5 - 45° were studied for turbul...

متن کامل

Unsteady-state Computational Fluid Dynamics Modeling of Hydrogen Separation from H2/N2 Mixture

3D modeling of Pd/α-Al2O3 hollow fiber membrane by using computational fluid dynamic for hydrogen separation from H2/N2 mixture was considered in steady and unsteady states by using the concept of characteristic time. Characteristic time concept could help us to design and calculate surface to volume ratio and membrane thickness, and adjust the feed conditions. The contribution of resistance be...

متن کامل

Multiphase flow and tromp curve simulation of dense medium cyclones using Computational Fluid Dynamics

Dense Medium Cyclone is a high capacity device that is widely used in coal preparation. It is simple in design but the swirling turbulent flow, the presence of medium and coal with different density and size fraction and the presence of the air-core make the flow pattern in DMCs complex. In this article the flow pattern simulation of DMC is performed with computational fluid dynamics and Fluent...

متن کامل

Simulation of the course of evacuation in tunnel fire conditions by FDS+Evac

In this paper, simulation of fire in a short 2-lane road tunnel and its evacuation are described. Two traffic situations in the tunnel and their impact on people evacuation in fire conditions are analyzed. For simulation of the tunnel fire, the FDS (Fire Dynamics Simulator) system, version 5.5.3 based on advanced CFD (Computational Fluid Dynamics) fire model is used. The evacuation of people in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011